Disease resistance of Arabidopsis to Phytophthora brassicae is established by the sequential action of indole glucosinolates and camalexin.

نویسندگان

  • Klaus Schlaeppi
  • Eliane Abou-Mansour
  • Antony Buchala
  • Felix Mauch
چکیده

We have analysed the role of tryptophan-derived secondary metabolites in disease resistance of Arabidopsis to the oomycete pathogen Phytophthora brassicae. Transcript analysis revealed that genes encoding enzymes involved in tryptophan, camalexin and indole glucosinolate (iGS) biosynthesis are coordinately induced in response to P. brassicae. However, a deficiency in either camalexin or iGS accumulation has only a minor effect on the disease resistance of Arabidopsis mutants. In contrast, the double mutant cyp79B2 cyp79B3, which has a blockage in the production of indole-3-aldoxime (IAOx), the common precursor of tryptophan-derived metabolites including camalexin and iGS, is highly susceptible to P. brassicae. Because cyp79B2 cyp79B3 shows no deficiencies in other tested disease resistance responses, we concluded that the lack of IAOx-derived compounds renders Arabidopsis susceptible despite wild-type-like pathogen-induced hypersensitive cell death, stress hormone signaling and callose deposition. The susceptibility of the double mutant pen2-1 pad3-1, which has a combined defect in camalexin synthesis and PEN2-catalysed hydrolysis of iGS compounds, demonstrates that both camalexin and products of iGS hydrolysis are important for disease resistance to P. brassicae. Products of iGS hydrolysis play an early defensive role, as indicated by enhanced epidermal penetration rates of Arabidopsis mutants affected in iGS synthesis or degradation. Our results show that disease resistance of Arabidopsis to P. brassicae is established by the sequential activity of the phytoanticipin iGS and the phytoalexin camalexin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Indolic secondary metabolites protect Arabidopsis from the oomycete pathogen Phytophthora brassicae.

The model plant Arabidopsis thaliana contains a large arsenal of secondary metabolites that are not essential in development but have important ecological functions in counteracting attacks of pathogens and herbivores. Preformed secondary compounds are often referred to as phytoanticipins and metabolites, that are synthesized de novo in response to biotic stress are known as phytoalexins. Camal...

متن کامل

Camalexin is synthesized from indole-3-acetaldoxime, a key branching point between primary and secondary metabolism in Arabidopsis.

Characteristic for cruciferous plants is their production of N- and S-containing indole phytoalexins with disease resistance and cancer-preventive properties, previously proposed to be synthesized from indole independently of tryptophan. We show that camalexin, the indole phytoalexin of Arabidopsis thaliana, is synthesized from tryptophan via indole-3-acetaldoxime (IAOx) in a reaction catalyzed...

متن کامل

The role of MYB34, MYB51 and MYB122 in the regulation of camalexin biosynthesis in Arabidopsis thaliana

The phytoalexin camalexin and indolic glucosinolates share not only a common evolutionary origin and a tightly interconnected biosynthetic pathway, but regulatory proteins controlling the shared enzymatic steps are also modulated by the same R2R3-MYB transcription factors. The indolic phytoalexin camalexin is a crucial defense metabolite in the model plant Arabidopsis. Indolic phytoalexins and ...

متن کامل

Identification of PAD2 as a gamma-glutamylcysteine synthetase highlights the importance of glutathione in disease resistance of Arabidopsis.

The Arabidopsis pad2-1 mutant belongs to a series of non-allelic camalexin-deficient mutants. It was originally described as showing enhanced susceptibility to virulent strains of Pseudomonas syringae and was later shown to be hyper-susceptible to the oomycete pathogen Phytophthora brassicae (formerly P. porri). Surprisingly, in both pathosystems, the disease susceptibility of pad2-1 was not ca...

متن کامل

The glutathione-deficient mutant pad2-1 accumulates lower amounts of glucosinolates and is more susceptible to the insect herbivore Spodoptera littoralis.

Summary Plants often respond to pathogen or insect attack by inducing the synthesis of toxic compounds such as phytoalexins and glucosinolates (GS). The Arabidopsis mutant pad2-1 has reduced levels of the phytoalexin camalexin and is known for its increased susceptibility to fungal and bacterial pathogens. We found that pad2-1 is also more susceptible to the generalist insect Spodoptera littora...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant journal : for cell and molecular biology

دوره 62 5  شماره 

صفحات  -

تاریخ انتشار 2010